GigaVision Challenge

When Gigapixel Videography Meets Computer Vision

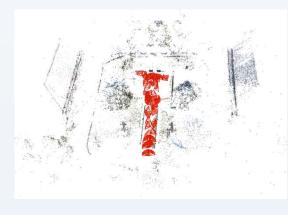
Track: Rendering Team name: DTM 3D

Team Introduction

Zizhuang Wei is currently an **AI algorithm researcher** in **Digital Twin Lab, Huawei**. He received the Ph.D degree from Graphics and Interaction Lab, Dept. of EECS, Peking University. His research interests focus on 3D reconstruction and deep learning.

Qingtian Zhu is currently a master student at Graphics and Interaction Lab (GIL) of Peking University. His research interests include 3D reconstruction and computational photogrammetry.

8688 x 5792



Original Images

Camera poses

Challenges

- Very high resolution
- Large scale scenes
- Unbounded scenario
- Sparse view reconstruction
- Inaccurate camera poses
- Large area of sky

.

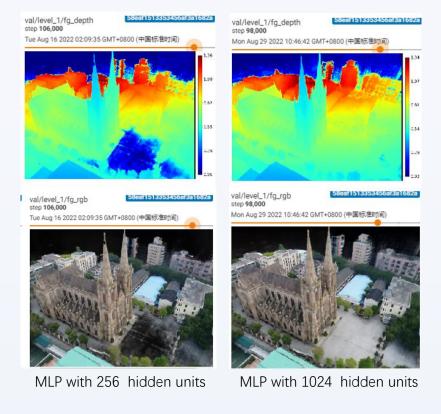
• Complex lighting conditions

	$PSNR \uparrow$	SSIM \uparrow	LPIPS \downarrow	Time (hrs)	# Params
NeRF [12, 30]	23.85	0.605	0.451	4.16	1.5M
NeRF w/ DONeRF [31] param.	24.03	0.607	0.455	4.59	1.4M
mip-NeRF [3]	24.04	0.616	0.441	3.17	0.7M
NeRF++ [46]	25.11	0.676	0.375	9.45	2.4M
Deep Blending [15]	23.70	0.666	0.318	7-	-
Point-Based Neural Rendering [23]	23.71	0.735	0.252	-	-
Stable View Synthesis [38]	25.33	0.771	0.211	-	-
mip-NeRF [3] w/bigger MLP	26.19	0.748	0.285	22.71	9.0M
NeRF++ [46] w/bigger MLPs	26.39	0.750	0.293	19.88	9.0M
Our Model	27.69	0.792	0.237	6.89	9.9M
Our Model w/GLO	26.26	0.786	0.237	6.90	9.9M

Table 1. A quantitative comparison of our model with several prior works using the dataset presented in this paper.

From Mip NeRF 360^[1] (CVPR 2022 Oral)

• Parameterization in Unbounded Scenarios



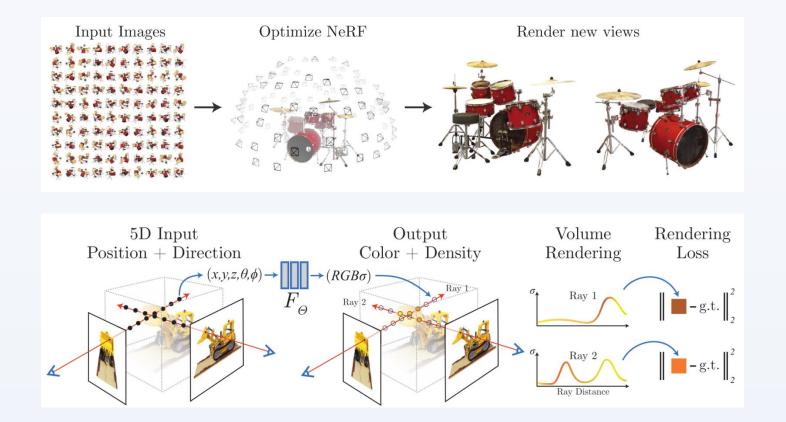
PSNR=20.6

PSNR=22.8

• Using bigger MLPs

[1] Barron, J. T., Mildenhall, B., Verbin, D., Srinivasan, P. P., & Hedman, P. (2022). Mip-nerf 360: Unbounded anti-aliased neural radiance fields. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (pp. 5470-5479).

Solution and Innovation

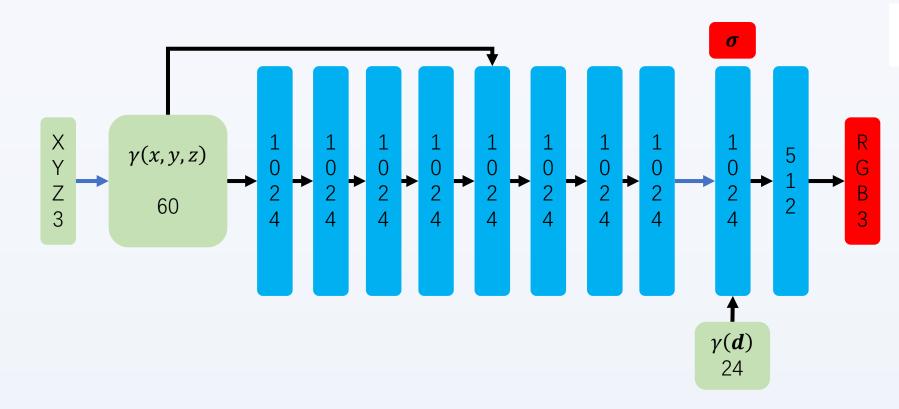


We synthesize views by querying 5D coordinates along camera rays and use volume rendering techniques to project the output colors into an image. A fully-connected deep network is used to represent the scenes by **Neural Radiance Field**.

Neural Radiance Field^[2] framework

[2] Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., & Ng, R. (2021). Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications of the ACM*, *65*(1), 99-106.

Solution and Innovation

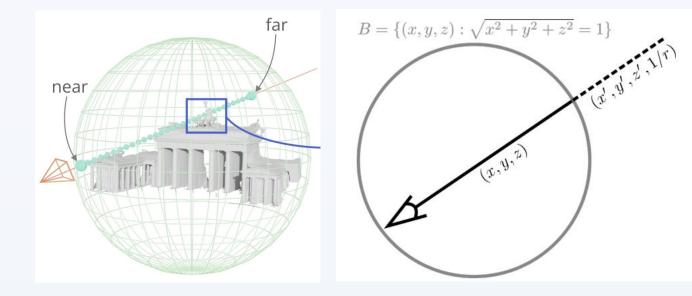


8-layer fully-connected MLP Network

$$\mathcal{L} = \sum_{\mathbf{r}\in\mathcal{R}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

We use an **8-layer mlp network** to train our model, with **1024 hidden units**, which is able improve the network's ability to represent large-scale scenes.

Solution and Innovation



Inside: original depth; outside: inverse depth.

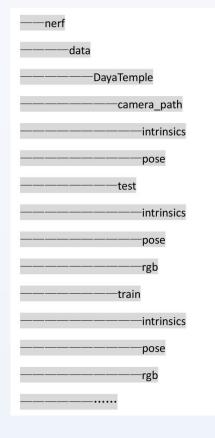
We apply different parameterizations^[3] for scene contents inside and outside the unit sphere.

$$\mathbf{C}(\mathbf{r}) = \underbrace{\int_{t=0}^{t'} \sigma(\mathbf{o} + t\mathbf{d}) \cdot \mathbf{c}(\mathbf{o} + t\mathbf{d}, \mathbf{d}) \cdot e^{-\int_{s=0}^{t} \sigma(\mathbf{o} + s\mathbf{d})ds} dt}_{(i)} + \underbrace{e^{-\int_{s=0}^{t'} \sigma(\mathbf{o} + s\mathbf{d})ds}}_{(ii)} \cdot \underbrace{\int_{t=t'}^{\infty} \sigma(\mathbf{o} + t\mathbf{d}) \cdot \mathbf{c}(\mathbf{o} + t\mathbf{d}, \mathbf{d}) \cdot e^{-\int_{s=t'}^{t} \sigma(\mathbf{o} + s\mathbf{d})ds} dt}_{(iii)}.$$

Foreground

Background

File organization



Requirements

Subject	Requirement
OS	Linux Ubuntu 20.04.5
GPU	32G Tesla V100 at least
CPU	Intel Xeon Gold 6132
Memory	256G+
Disk	4T
Cuda	11.4
OpenCV -python	4.4
Python	3.6.13

Settings

Subject	Requirement
Resolution for training	1086 X 724
Resolution for testing	8688 X 5792
Cascade stages	2
Cascade samples	128,64
Learining rate	0.0005
Iterations	>=500000

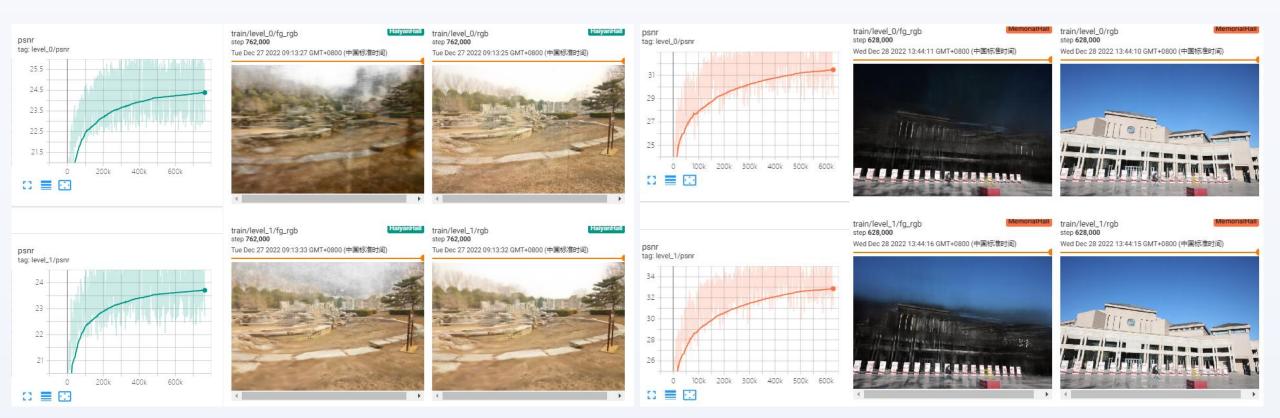
It takes about 30 days for training and about 10 days for testing with 8 X Tesla V100 GPUs.

Leaderboard

									MARY AND
#	Team	Members et al. INERF. Representing Sci	PSNR enes as iveurai r		LPIPS	Method	Code		
	PDMYR		17.57472	0.640418	0.47436				
	DTM 3D	1	17.41261	0.654217	0.56762				
	Unrendered	@	17.40951	0.629034	0.46825				
	cs271	•	17.07217	0.657387	0.56029				
	算法cj		16.04978	0.586286	0.55697				
	1080Ti	9	12.75886	0.499533	0.5962				
	CNU	E	12.65009	0.563411	0.6728				-
	try 1 try	۲	10.01236	0.443952	0.72387				
	GGBoy		9.72022	0.430803	0.63517			G MILL	
	CUR		4.34982	0.433014	0.37134				

Our method ranks 2nd on Track Rendering (Except the baseline methods)

Intermediate Results



The average PSNR during training is **24.7**, while the second cascade level is not always better than the first level. However, we still keep the finer level images for evaluation. It's worth mentioning that we only submitted **once** rendering results (limited by computing resources).

• Our method took the **second place** using a Neural Radiance Field

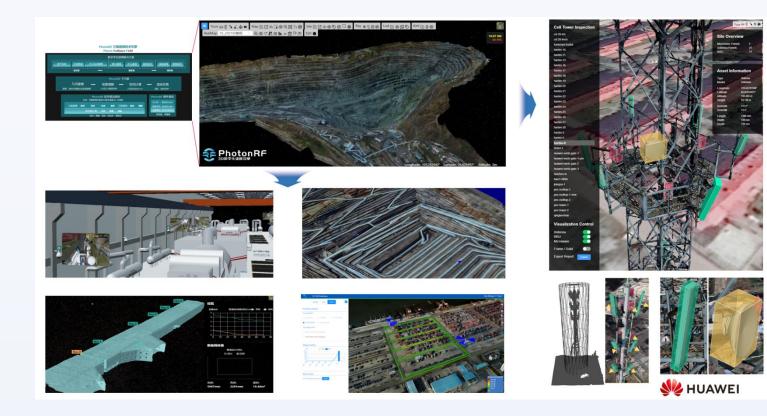
framework, in which **different parameterizations** for scene contents inside and outside the unit sphere and **larger MLPs** play a key role.

• Because of sparse views and large scenes, it is difficult for nerf networks to

obtain perfect results. The methods which introduce geometric constraints,

are expected to achieve better results.

Invitation Digital Twin Lab, Huawei



Our team focuses on cutting-edge technology research and engine development of **image/LiDAR 3D reconstruction** and **2/3D semantic understanding** for solving technical problems such as **environment 3D modeling** and perception in **5G network simulation**.

Contact: Hong.Shen233@huawei.com

Welcome to join us!

THANKS !

